¹ Departmental-level approaches to Gender Equity in

2 Biology

- 3 Christiana J McDonald-Spicer¹, Benjamin Schwessinger¹, Susan Howitt¹,
- 4 ¹Research School of Biology, The Australian National University, Canberra, ACT,
- 5 Australia
- 6
- 7 Corresponding Author:
- 8 Christiana McDonald-Spicer¹
- 9
- 10 Email address: christiana.mcdonald-spicer@anu.edu.au

11 <u>Abstract</u>

12	Gender equity remains a large issue in academia, with women comprising only about
13	one fifth of professors in the US. There are many changes that can be made to increase
14	equity, including institutional policies, cultural change and bottom-up strategies, but these
15	can be difficult or slow to implement at a departmental level. Hiring is one area that can be
16	easily tackled at a departmental level and is strongly influenced by implicit and systematic
17	bias. Here we focus on two methods of tackling bias in recruitment – redefining merit and
18	identified positions.

19 Keywords

20 Gender equity, recruitment

21 Introduction

22	There remains far fewer women in senior academic positions than men (OECD 2006),
23	despite undergraduate cohorts being generally gender-neutral, or female-biased, since the
24	mid-1980s (Luckenbill-Edds 2002). In the US women make up approximately 60% of
25	undergraduates and half of PhD graduates in biological and life sciences, but only one-fifth of
26	professors (Figure 1), despite there being no difference in academic ability or performance
27	between men and women (O'Dea et al. 2018). This is reflected in authorships, with women
28	accounting for less than one-third the authorships on scientific papers, and just under one-
29	third first authorships (Larivière et al. 2013). Current strategies are not working quickly
30	enough to address this inequity. For example, with the current rate of change in biology
31	authorships, it will take 25 years before parity in authorship is achieved (Holman et al. 2018).
32	A recent report in Science suggested an approach to training and action that embeds evidence
33	and evaluation (Moss-Racusin et al. 2014). This is essential to avoid current ad hoc
34	approaches and anecdotal responses.
35	Issues of equity are important ideologically, but there is also evidence that workplaces
36	with a good gender ratio perform better. Having a higher percentage of women than is
37	currently found in academia increases the collective intelligence of collaborations and teams
38	(Woolley et al. 2010), with mixed-gender authorship teams receiving 34% more citations
39	than gender-uniform authored papers (Campbell et al. 2013). Having fewer women in
40	science decreases productivity and limits innovation (Bell et al. 2009). There is also an

41 argument that as science is largely publicly funded, underrepresented groups such as women

42 should have increased representation (Wallon et al. 2015).

We recognise that gender equity is only one form of equity that academia struggles
with. For example, people of colour, LGBTQIA+ people, people with a disability, people

Peer Preprints

45 from culturally and linguistically diverse backgrounds, and people from working class 46 backgrounds are all underrepresented in science. This is particularly exacerbated when 47 individuals belong to more than one marginalised group. It is important that these identities 48 are acknowledged and considered in hiring processes, particularly considering the diverse 49 student body in biology, many of whom lack a clear role model in academia. By promoting 50 equity and addressing bias in the selection process, hopefully diversity across and within 51 these areas will also increase. If not, more targeted programs could be introduced to address 52 other areas of inequity in academia.

53 Gender inequity in academia is caused by a combination of factors, including carer 54 roles and expectations, lack of role models, sexual harassment and bullying, and implicit bias. 55 Ensuring effective institutional policies, such as around shared parental leave, is important in 56 addressing these. Cultural shifts are also necessary, such as greater acceptance of men taking 57 extended parental leave and reduced tolerance of sexual harassment. However, while 58 important, these are often long-term changes. 'Bottom-up' strategies include mentoring, 59 networking programs, and professional development opportunities, which require women to 60 opt-in and participate. These programs can have positive impacts (Laver et al. 2018), but can 61 also exacerbate existing inequalities by requiring additional labour from the people the 62 programs are trying to support. Here, we focus on two changes to recruitment and selection, 63 as these are easily implemented at a departmental level.

64 <u>Rethinking Merit</u>

Merit is rarely explicitly defined as most academics are confident that they can identify strong performance and are committed to maintaining excellence in their departments. In selecting candidates, several factors are considered, including research achievements (through, for example, the number of papers published), teaching ability (e.g. student

69 reviews), and academic service (e.g. committee work, mentoring or outreach). However, 70 some of these are more easily measured than others and factors are not weighted consistently 71 by all selection panel members. This leads to considerable potential for subjectivity in 72 decisions, with a bias towards factors that are more easily compared quantitatively, such as 73 publications, and against those that are hard to measure, like mentoring. This can lead to 74 gender inequity through both implicit bias and the measures used in defining merit. Stating 75 that appointments are made on merit and there is no need for action ignores a large body of 76 evidence to the contrary.

77 Implicit bias

78 There is strong evidence that implicit bias plays a role in hiring and promotion 79 decisions. Implicit bias, or unconscious bias, occurs without the person making a conscious 80 decision. For example, several studies have explored the concept of 'aesthetic capital' and the 81 'ugliness penalty,' the effect that better-looking people have more success in a range of 82 endeavours, including job interviews and loan applications (Tietje & Cresap 2005). Even 83 small levels of implicit bias can have a large impact on the structure of an organisation, with 84 a bias against women of only 1% at multiple points capable of explaining current levels of 85 senior women in STEMM fields (Martell et al. 1996). Simply put, if you 'pick the best' and 86 men have a small advantage they repeatedly win in pairwise assessments between otherwise 87 equal top two applicants. We therefore need to understand implicit bias and how it affects perceptions of merit. 88

Implicit bias against women is present in academia in all genders. For example, a recent
study sent an identical CV for a laboratory manager position to multiple potential supervisors.
Those given the CV for 'Jennifer' rated the applicant less competent and less hireable, and
offered them less mentoring and a lower salary, than those given the CV for 'John',

Peer Preprints

93 regardless of the gender of the potential supervisor (Moss-Racusin et al. 2012). In general, 94 women are perceived to be less suited for leadership roles and are often criticised for showing signs of leadership praised in men (e.g. competitiveness or aggression) (Rudman 1998). 95 96 The use of merit as an indicator can be strongly impacted by implicit bias. A recent 97 study indicates that when an organisation is explicitly presented as meritocratic, managers 98 favour male employees over equally qualified female employees by awarding them larger 99 monetary rewards. This phenomenon has been dubbed the 'merit paradox' whereby a focus 100 on merit results in more biased outcomes (Castilla & Benard 2010). This means that the use 101 of merit as a hiring strategy is not objective, as it is often held to be. 102 **Defining merit** 103 The current definition of merit used in academia often emphasises career paths and 104 characteristics that are more typically masculine, disadvantaging women and other minority 105 groups. For example, men often have more publications than women (Symonds et al. 2006), 106 for several reasons. Men are socialised to be more assertive and effective at self-promotion 107 (Rudman 1998), which can lead to them having their name included on more publications. 108 Additionally, women tend to have more career breaks than men due to societal expectations 109 around caring responsibilities, leading to fewer publications. Recent work suggests that the 110 peer review process is biased, with reviewers more likely to accept manuscripts from those of 111 the same gender and country as themselves (Murray et al. 2018). Since there are already more 112 men in STEMM fields, this perpetuates the existing inequity. Similar patterns are found with 113 talks, with men more likely to be invited to speak in conference symposia and specialised 114 courses (Isbell et al. 2012; Débarre et al. 2018). 115 Papers authored by women generally have fewer citations, getting cited less than

identical papers authored by men (Maliniak et al. 2013; Larivière et al. 2013), most likely due

Peer Preprints

to a combination of implicit bias and differences in self-citation. Men are 56% more likely to
self-cite than women (King et al. 2017), which may increase the total number of citations
they receive.

120	Another metric used in assessing merit is student evaluations of teaching. However,
121	these are significantly biased against women, with students rating female teachers lower on
122	every aspect of teaching, including 'objective' measures like how soon assignments are
123	returned (Boring et al. 2016) or in identical courses (MacNell et al. 2015; Mitchell & Martin
124	2018). This is exacerbated when the teacher is a woman of colour (Perry et al. 2015; Pittman
125	2010) or LGBTQIA+ (Ewing et al. 2003).

Women, particularly women of colour, those from working class backgrounds and
LGBTQIA+ women, are also more likely to spend more time mentoring and on other
academic service work than men (Misra & Lundquist 2015). Time spent on this essential but
'invisible' work means there is less time available for these academics to spend on work that
is valued in hiring (Social Sciences Feminist Network Research Interest Group 2017; Guarino
& Borden 2017).

132 This evidence leads to the conclusion that the selection process for academic positions 133 needs to be re-considered. Research quality, rather than quantity, should be the most 134 important factor. One method is to ask applicants for their top papers, an approach being 135 increasingly used. Alternatively, applicants could be asked to provide a research narrative 136 that explains their goals and impact, as is currently required for ARC Future Fellowships. 137 There is also a need to recognise and reward less measurable activities that also contribute to 138 academic work, such as excellence in teaching, contributions to service, mentoring and 139 outreach.

140 Identified Positions

An identified position is an advertised position open only to people with a certain characteristic, in this instance women and non-binary people, with the aim of increasing representation of under-represented groups. Identified positions and quotas are short-term solutions, used to rectify past and current inequalities in how people of different genders are treated.

146 Identified positions are being increasingly used in academia to address gender inequity. 147 For example, several Australian universities have recently advertised identified positions for 148 women in STEMM fields (e.g. University of Adelaide, University of Melbourne and The 149 Australian National University). International universities have also introduced identified 150 positions, such as the Delft Technology Fellowship at the Delft University of Technology. 151 Quotas can also be applied to governance roles; for example, Austrian universities are bound 152 by legislation to ensure all university bodies have 50% women. However, such policies can 153 place undue pressure on the small number of women eligible.

The impact on gender equity from identified positions is much faster than from other measures, as they force change to happen, instead of relying on discussions and policies that may not translate into organisational change (Wallon et al. 2015). A projection based on a US university showed that given equal rates of men and women being hired and leaving (eliminating any hiring and retention biases), gender parity would be reached in 57 years. If only women were hired this would be reached in 11 years, showing the dramatic impact that identified positions could have on gender equity (Marschke et al. 2007).

Ideally, increasing the representation of women through identified positions will allow
a 'critical mass' of women in senior positions to be reached, making these measures
unnecessary. While implicit bias occurs in all genders, research has shown that increasing the

Peer Preprints

164 number of women can help balance the gender ratio further. For example, mixed-gender 165 review committees promote men and women at equal rates while those comprising only men 166 are less likely to promote women (De Paola & Scoppa 2015; Zinovyeva & Bagues 2010). In 167 the private sector, areas with more women in managerial positions have increased hiring and 168 promotion of other women (Kurtulus & Tomaskovic-Devey 2012), while women are more 169 likely to correctly rate another woman's job performance than men are (Bowen et al. 2000). 170 The two main issues with identified positions are interrelated. Colleagues may be 171 concerned that underqualified people will be hired over others more qualified or with greater 172 'merit' (Wallon et al. 2015). There are many issues with the definition of merit (see previous 173 section) which would have to be explored alongside the use of identified positions. There is 174 also the concern that any successful hires may be viewed as 'tokens' and marginalised 175 (Wallon et al. 2015). The stigma surrounding staff hired through identified positions would

176 have to be addressed based on the organisational culture.

177 **Proposals**

Proposals for consideration

We propose five actions that biology departments should consider implementing in their recruitment processes. While not all will be applicable to every department, we suggest that they are discussed extensively within departments to ensure a shared understanding of the issues and commitment to equity.

Aim to maintain the ratio of percentage of women group leaders in the range
 40-60%. When the department moves outside this ratio, advertise gender-specific positions
 (e.g. open only to women/non-binary people only) until it returns to within these limits.
 Expect all staff to take an implicit bias test and/or unconscious bias training.

186 Have one person on all selection committees whose role is to challenge potentially biased

187 statements (it is easier to recognise unconscious bias in others than in yourself).

Peer Preprints

188	3.	Reconsider the selection process to better reflect a broader range of activities,
189	with a comm	itment to improved evaluation of activities that are difficult to quantify, for
190	example men	toring, leadership in teaching, service and science communication.
191	4.	Focus on research quality, not quantity, e.g. by assessing the ten best
192	publications	only or asking applicants for a research narrative that demonstrates impact.
193	5.	Recognise that equal opportunity is not just a gender issue and ensure that fair
194	consideration	is given to people of colour, LGBTQIA+ people, those from low socio-
195	economic bac	kgrounds, those with disabilities, and those from culturally and linguistically
196	diverse backg	grounds.
197	Acknowledg	<u>ements</u>

We thank our colleagues at the ANU's Research School of Biology, particularlymembers of the Equity Committee, for helpful discussions and comments on the manuscript.

200

References

201	Bell, S. et al., 2009. Women in the science research workforce: identifying and
202	sustaining the diversity advantage, Available at:
203	http://www.womeninscienceresearch.org.au/docs/Wmn-in-Sci-Rsrch-Rprt-web.pdf.
204	Boring, A. et al., 2016. Student Evaluations of Teaching (Mostly) Do Not Measure
205	Teaching Effectiveness. ScienceOpen Research.
206	Bowen, C.C., Swim, J.K. & Jacobs, R.R., 2000. Evaluating gender biases on actual job
207	performance of real people: A meta-analysis. Journal of Applied Social Psychology.
208	Campbell, L.G. et al., 2013. Gender-heterogeneous working groups produce higher
209	quality science. PLoS ONE.
210	Castilla, E.J. & Benard, S., 2010. The Paradox of Meritocracy in Organizations.
211	Administrative Science Quarterly, 55, pp.543–576.
212	Débarre, F., Rode, N.O. & Ugelvig, L. V., 2018. Gender equity at scientific events.
213	Evolution Letters.
214	Ewing, V.L., Sheehan, E.P. & Stukas, A.A., 2003. Student prejudice against gay male
215	and lesbian lecturers. Journal of Social Psychology.
216	Guarino, C.M. & Borden, V.M.H., 2017. Faculty Service Loads and Gender: Are
217	Women Taking Care of the Academic Family? Research in Higher Education.
218	Holman, L., Stuart-Fox, D. & Hauser, C.E., 2018. The gender gap in science: How long
219	until women are equally represented? PLoS Biology.
220	Isbell, L.A., Young, T.P. & Harcourt, A.H., 2012. Stag Parties Linger: Continued
221	Gender Bias in a Female-Rich Scientific Discipline. PLoS ONE.

Peer Preprints

222	King, M.M. et al., 2017. Men Set Their Own Cites High: Gender and Self-citation
223	across Fields and over Time. Socius: Sociological Research for a Dynamic World.
224	Kurtulus, F.A. & Tomaskovic-Devey, D., 2012. Do Female Top Managers Help
225	Women to Advance? A Panel Study Using EEO-1 Records. The ANNALS of the American
226	Academy of Political and Social Science.
227	Larivière, V. et al., 2013. Bibliometrics: Global gender disparities in science. Nature,
228	504(7479). Available at: https://www.nature.com/news/bibliometrics-global-gender-
229	disparities-in-science-1.14321.
230	Laver, K.E. et al., 2018. A systematic review of interventions to support the careers of
231	women in academic medicine and other disciplines. BMJ Open.
232	Luckenbill-Edds, L., 2002. The educational pipeline for women in biology: No longer
233	leaking? <i>Bioscience</i> , 52(6), pp.513–521.
234	MacNell, L., Driscoll, A. & Hunt, A.N., 2015. What's in a Name: Exposing Gender
235	Bias in Student Ratings of Teaching. Innovative Higher Education.
236	Maliniak, D., Powers, R. & Walter, B.F., 2013. The gender citation gap in international
237	relations. International Organization, 67(4), pp.889–922.
238	Marschke, R. et al., 2007. Demographic Inertia Revisited: An Immodest Proposal to
239	Achieve Equitable Gender Representation among Faculty in Higher Education. The Journal
240	of Higher Education, 78(1), pp.1–26.
241	Martell, R.F., Lane, D.M. & Emrich, C., 1996. Male-female differences: A computer
242	simulation. American Psychologist, 51(2), pp.157–158.
243	Misra, J. & Lundquist, J., 2015. Diversity and the ivory ceiling. Inside HigherEd.
244	Available at: https://www.insidehighered.com/advice/2015/06/26/essay-diversity-issues-and-
	12

245	midcareer-faculty-members.
246	Mitchell, K.M.W. & Martin, J., 2018. Gender Bias in Student Evaluations. PS: Political
247	Science & Politics.
248	Moss-Racusin, C.A. et al., 2012. Science faculty's subtle gender biases favor male
249	students. Proceedings of the National Academy of Sciences.
250	Moss-Racusin, C.A. et al., 2014. Scientific diversity interventions. Science, 343(6171).
251	Murray, D. et al., 2018. Gender and international diversity improves equity in peer
252	review. <i>bioRxiv</i> . Available at: https://www.biorxiv.org/content/early/2018/08/29/400515.
253	National Center for Science and Engineering Statistics, 2017. WMPD in Science and
254	Engineering: Data Tables. Women, Minorities, and Persons with Disabilities in Science and
255	Engineering.
256	O'Dea, R.E. et al., 2018. Gender differences in individual variation in academic grades
257	fail to fit expected patterns for STEM. Nature Communications, 9(1), p.3777.
258	OECD, 2006. Women in Scientific Careers: Unleashing the potential, Available at:
259	http://www.oecd.org/sti/sci-tech/womeninscientificcareersunleashingthepotential.htm.
260	De Paola, M. & Scoppa, V., 2015. Gender discrimination and evaluators' gender:
261	Evidence from Italian academia. Economica.
262	Perry, A.R. et al., 2015. Understanding student evaluations : a black faculty
263	perspective, Available at: http://ir.library.louisville.edu/faculty/15.
264	Pittman, C.T., 2010. Race and Gender Oppression in the Classroom: The Experiences
265	of Women Faculty of Color with White Male Students. Teaching Sociology.
266	Rudman, L.A., 1998. Self-Promotion as a Risk Factor for Women: The Costs and

Peer Preprints

267	Benefits of Counterstereotypical Impression Management. Journal of Personality and Social
268	Psychology.
269	Social Sciences Feminist Network Research Interest Group, 2017. The burden of
270	invisible work in academia: Social inequalities and time use in five university departments.
271	Humboldt Journal of Social Relations, 39(39), pp.228–245.
272	Symonds, M.R.E. et al., 2006. Gender differences in publication output: Towards an
273	unbiased metric of research performance. PLoS ONE.
274	Tietje, L. & Cresap, S., 2005. Is Lookism Unjust?: The Ethics of Aesthetics and Public
275	Policy Implications. Journal of Libertiarian Studies, 19(2), pp.31–50.
276	Wallon, G., Garfinkel, M.S. & Bendiscioli, S., 2015. Exploring quotas in academia,
277	Available at: http://www.embo.org/documents/science_policy/exploring_quotas.pdf.
278	Woolley, A.W. et al., 2010. Evidence for a collective intelligence factor in the
279	performance of human groups. Science, 220(6004), pp.686–688.
280	Zinovyeva, N. & Bagues, M., 2010. Does Gender Matter for Academic Promotion?
281	Evidence from a Randomized Natural Experiment, Available at:
282	https://ssrn.com/abstract=1618256.

283 <u>Figure 1</u>

- 284 Gender equity in US universities for biological and life sciences, student data from
- 285 2014 and academic data from 2015. Data from (National Center for Science and Engineering
- 286 Statistics 2017)

287